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ABSTRACT

A criterion for pruning parameters from N-gram backoff language
models is developed, based on the relative entropy between the orig-
inal and the pruned model. It is shown that the relative entropy
resulting from pruning a single N-gram can be computed exactly
and efficiently for backoff models. The relative entropy measure
can be expressed as a relative change in training set perplexity. This
leads to a simple pruning criterion whereby all N-grams that change
perplexity by less than a threshold are removed from the model. Ex-
periments show that a production-quality Hub4 LM can be reduced
to 26% its original size without increasing recognition error. We also
compare the approach to a heuristic pruning criterion by Seymore
and Rosenfeld [9], and show that their approach can be interpreted
as an approximation to the relative entropy criterion. Experimen-
tally, both approaches select similar sets of N-grams (about 85%
overlap), with the exact relative entropy criterion giving marginally
better performance.

1. Introduction

N-gram backoff models [5], despite their shortcomings, still
dominate as the technology of choice for state-of-the-art
speech recognizers [4]. Two sources of performance improve-
ments are the use of higher-order models (several DARPA-
Hub4 sites now use 4-gram or 5-gram models) and the inclu-
sion of more training data from more sources (Hub4 models
typically include Broadcast News, NABN and WSJ data).
Both of these approaches lead to model sizes that are im-
practical unless some sort of parameter selection technique
is used. In the case of N-gram models, the goal of parame-
ter selection is to chose which N-grams should have explicit
conditional probability estimates assigned by the model, so
as to maximize performance (i.e., minimize perplexity and/or
recognition error) while minimizing model size. As pointed
out in [6], pruning (selecting parameters from) a full N-gram
model of higher order amounts to building avariable-length
N-gram model, i.e., one in which training set contexts are not
uniformly represented by N-grams of the same length.

Seymore and Rosenfeld [9] showed that selecting N-grams
based on their conditionalprobabilityestimates and frequency
of use is more effective than the traditional absolute frequency
thresholding. In this paper we revisit the problem of N-gram
parameter selection by deriving a criterion that satisfies the
following desiderata.

� Soundness:The criterion should optimize some well-
understood information-theoretic measure of language
model quality.

� Efficiency: An N-gram selection algorithm should be
fast, i.e., take time proportional to the number of N-
grams under consideration.

� Self-containedness:As a practical consideration, we
want to be able to prune N-grams from existing language
models. This means a pruning criterion should be based
only on information contained in the model itself.

In the remainder of this paper we describe our pruning al-
gorithm based on relative entropy distance between N-gram
distributions (Section 2), investigate how the quantities re-
quired for the pruning criterion can be obtained efficiently
and exactly (Section 3), show that the criterion is highly ef-
fective in reducing the size of state-of-the-art language models
with negligible performance penalties (Section 4), investigate
the relation between our pruning criterion and that of Sey-
more and Rosenfeld (Section 5), and draw some conclusions
(Section 6).

2. N-gram Pruning Based on Relative
Entropy

An N-gram language model represents a probability distribu-
tionover wordsw, conditionedon(N�1)-tuples of preceding
words, or historiesh. Only a finite set of N-grams(w; h) have
conditional probabilities explicitly represented in the model.
The remaining N-grams are assigned a probability by the re-
cursive backoff rule

p(wjh) = �(h)p(wjh0)

whereh0 is the historyh truncated by the first word (the one
most distant fromw), and�(h) is abackoff weightassociated
with historyh, determined so that

P
w p(wjh) = 1.

The goal of N-gram pruning is to remove explicit estimates
p(wjh) from the model, thereby reducing the number of pa-
rameters, while minimizing the performance loss. Note that
after pruning, the retained explicit N-gram probabilities are
unchanged, but backoff weights will have to be recomputed,



thereby changing the values of implicit (backed-off) probabil-
ity estimates. Thus, the pruning approach chosen is concep-
tually independent of the estimator chosen to determine the
explicit N-gram estimates.

Since one of our goals is to prune N-gram models without
access to any statistics not contained in the model itself, a
natural criterion is to minimize the ‘distance’ between the
distribution embodied by the original model and that of the
pruned model. A standard measure of divergence between
distributions isrelative entropyor Kullback-Leibler distance
(see, e.g., [2]). Although not strictly a distance metric, it is
a non-negative, continuous function that is zero if and only if
the two distributions are identical.

Let p(�j�) denote the conditional probabilities assigned by
the original model, andp0(�j�) the probabilities in the pruned
model. Then, the relative entropy between the two models is

D(pjjp0) = �

X
wi;hj

p(wi; hj)[logp0(wijhj)� logp(wijhj)]

(1)
where the summation is over all wordswi and histories (con-
texts)hj.

Our goal will be to select N-grams for pruning such that
D(pjjp0) is minimized. However, it would not be feasible
to maximize over all possible subsets of N-grams. Instead,
we will assume that the N-grams affect the relative entropy
roughly independently, and computeD(pjjp0) due to each
individual N-gram. We can then rank the N-grams by their
effect on the model entropy, and prune those that increase
relative entropy the least.

To choose pruning thresholds, it is helpful to look at a more
intuitive interpretation ofD(pjjp0) in terms ofperplexity, the
average branching factor of the language model. The per-
plexity of the original model (evaluated on the distribution it
embodies) is given by

PP = e
�

P
h;w

p(h;w) logp(wjh)
;

whereas the perplexity of the pruned model on the original
distribution is

PP
0 = e

�

P
h;w

p(h;w) logp0(wjh)

The relative change in model perplexity can now be expressed
in terms of relative entropy:

PP
0
� PP

PP
= eD(pjjp0)

� 1

This suggests a simple thresholding algorithm for N-gram
pruning:

1. Select a threshold�.

2. Compute the relative perplexity increase due to pruning
each N-gram individually.

3. Remove all N-grams that raise the perplexity by less than
�, and recompute backoff weights.

Relation to Other Work Our choice of relative entropy as
an optimization criterion is by no means new. Relative en-
tropy minimization (sometimes in the guise of likelihood max-
imization) is the basis of many model optimization techniques
proposed in the past, e.g., for text compression [1], Markov
model induction [10, 7]. Kneser [6] first suggested applying
it to backoff N-gram models, although, as shown in Section 5,
the heuristic pruning algorithm of Seymore and Rosenfeld
[9] amounts to an approximate relative entropy minimization.
The algorithm described in the next section is novel in that
it removes some of the approximations employed in previous
approaches. Specifically, the algorithm of [6] assumes that
backoff weights are unchanged by the pruning, and [9] does
not consider the effect that a changed backoff weight has on
N-gram probabilities other than the pruned one (this effect is
discussed in more detail in Section 5).

The main approximation that remains in our algorithm is the
greedy aspect: we do not consider possible interactions be-
tween selected N-grams, and prune based solely on relative
entropy due to removing a single N-gram, so as to avoid
searching the exponential space of N-gram subsets.

3. Computing Relative Entropy
We now show how the relative entropyD(pjjp0) due to prun-
ing a single N-gram parameter can be computed exactly and
efficiently. Consider the effect of removing an N-gram con-
sisting of historyh and wordw. This entails two changes to
the probability estimates.

� The backoff weight�(h) associated with historyh is
changed, affecting all backed-off estimates involving his-
tory h. We use the notation BO(wi; h) to denote this
case, i.e., that the original model does not contain an
explicit N-gram estimate for(wi; h). Let �(h) be the
original backoff weight, and�0(h) the backoff weight in
the pruned model.

� The explicit estimatep(wjh) is replaced by a backoff
estimate

p0(wjh) = �0(h)p(wjh0)

whereh0 is the history obtained by dropping the first
word inh.

All estimates not involving historyh remain unchanged, as
do all estimates for which BO(wi; h) is not true.

Substituting in (1), we get

D(pjjp0) = �

X
wi

p(wi; h)[logp0(wijh)� logp(wijh)] (2)

= �p(w; h)[logp0(wjh)� logp(wjh)]

�

X
wi : BO(wi; h)

p(wi; h)[logp0(wijh)� logp(wijh)]



= �p(h)
n
p(wjh)[logp0(wjh)� logp(wjh)]

+
X

wi : BO(wi; h)

p(wijh)[logp0(wijh)� logp(wijh)]
o

At first it seems as if computingD(pjjp0) for a given N-
gram requires a summation over the vocabulary, something
that would be infeasible for large vocabularies and/or models.
However, by plugging in the terms for the backed-off esti-
mates, we see that the sum can be factored so as to allow a
more efficient computation.

D(pjjp0)

= �p(h)
n
p(wjh) logp(wjh0) + log�0(h)� logp(wjh)]

+
X

wi : BO(wi; h)

p(wijh)[log�(h0)� log�(h)]
o

= �p(h)
n
p(wjh)[logp(wjh0) + log�0(h) � logp(wjh)]

+[log�(h0)� log�(h)]
X

wi : BO(wi; h)

p(wijh)
o

The sum in the last line represents the total probability mass
given to backoff (the numerator for computing�(h)); it needs
to be computed only once for eachh, which is done efficiently
by summing over allnon-backoffestimates:

X
wi:BO(wi;h)

p(wijh) = 1�

X
wi ::BO(wi;h)

p(wijh)

The marginal history probabilitiesp(h) are obtained by mul-
tiplying conditional probabilitiesp(h1)p(h2jh1) : : :.

Finally, we need to be able to compute the revised backoff
weights�0(h) efficiently, i.e., in constant time per N-gram.
Recall that

�(h) =
1�

P
wi::BO(wi;h)

p(wijh)

1�

P
wi ::BO(wi;h)

p(wijh
0)

�0(h) is obtained by dropping the term for the pruned N-gram
(w; h) from the summation in both numerator and denomina-
tor. Thus, we compute the original numerator and denomi-
nator once per historyh, and then addp(wjh) andp(wjh0),
respectively, to obtain�0(h) for each prunedw.

4. Experiments
We evaluated relative entropy-based language model prun-
ing in the Broadcast News domain, using SRI’s 1996 Hub4
evaluation system [8]. N-best lists generated with a bigram
language model were rescored with various pruned versions
of a large four-gram language model.1

1We used the 1996 system, partly due to time constraints, partly be-
cause the 1997 system generated N-best lists using a large trigram language
model, which makes rescoring experiments with smaller language models
less meaningful.

� bigrams trigrams 4-grams PP WER
0 11093357 14929826 3266900 163.0 32.6

10�9 7751596 9634165 1938343 163.9 32.6
10�8 3186359 3651747 687742 172.3 32.6
10�7 829827 510646 62481 202.3 33.9

0 11093357 14929826 0 172.5 32.9

Table 1: Perplexity (PP) and word error rate (WER) as a
function of pruning threshold and language model sizes.

As noted in Section 2, the pruning algorithm is applicable
irrespective of the particular N-gram estimator used. We used
Good-Turing smoothing [3] throughout and did not investi-
gate possible interactions between smoothing methods and
pruning.

Table 1 shows model size, perplexity and word error results as
determined on the development test set, for various pruning
thresholds. The first and last rows of the table give the per-
formance of the full four-gram and the pure trigram model,
respectively. Note that perplexity here refers to the indepen-
dent test set, not to the training set perplexity that underlies
the pruning criterion.

As shown, pruning is highly effective. For� = 10�8, we
obtain a model that is 26% the size of the original model
without degradation in recognition performance and less than
6% perplexity increase. Comparing the pruned four-gram
model to the full trigram model, we see that it is better to
include non-redundant four-grams than to use a much larger
number of trigrams. The pruned (� = 10�8) four-gram has
the same perplexity and lower word error (p < 0:07) than the
full trigram.

5. Comparison to Seymore and Rosenfeld’s
Approach

In [9], Seymore and Rosenfeld proposed a different pruning
scheme for backoff models (henceforth called the “SR crite-
rion,” as opposed to the relative entropy, or “RE criterion”).
In the SR approach, N-grams are ranked by a weighted differ-
ence of the log probability estimate before and after pruning,

N (w; h)[logp(wjh)� logp0(wjh)] (3)

whereN (w; h) is the discounted frequency with which N-
gram(w; h) was observed in training. Comparing (3) with
the expansion ofD(pjjp0) in (2), we see that the two criteria
are related. First, we can assume thatN (w; h) is roughly
proportional top(w; h), so for ranking purposes the two are
equivalent. The difference of the log probabilities in (3) corre-
sponds to the same quantity in (2). Thus, the major difference
between the two approaches is that the SR criterion does not
include the effect on N-grams other than the one being consid-
ered, namely, those due to changes in the backoff weight�(h).



No. Trigrams SR RE
1000 238.1 237.9

10000 225.1 223.9
100000 207.3 205.2

1000000 186.4 184.7

Table 2: Comparison of Seymore and Rosenfeld (SR) and
Relative Entropy (RE) pruning: perplexities as a function of
the number of trigrams.

To evaluate the effect of ignoring backed-off estimates in the
pruning criterion we compared the performance of the SR and
the RE criterion on the Broadcast News development test set,
using the same N-best rescoring system as described before.
To make the methods comparable we adopted Seymore and
Rosenfeld’s approach of ranking the N-grams according to the
criterion in question, and to retain a specified number of N-
grams from the top of the ranked list. For the sake of simplicity
we used a trigram-only version of the Hub4 language model
used earlier, and restricted pruning to trigrams.

We also verified that the discounted frequencyN (w; h) in
(3) could be replaced with the model’s N-gram probability
p(w; h) without changing the ranking significantly: over 99%
of the chosen N-grams were the same. This means the SR
criterion can also bebased entirely on information in themodel
itself, making it more convenient for model post-processing.

Tables 2 and 3 show model perplexity and word error rates,
respectively, for the two pruning methods as a function of the
number of trigrams in the model. In terms of perplexity, we
see a very small, albeit consistent, advantage for the relative
entropy method, as expected given the optimized criterion.
However, the difference is negligible when it comes to recog-
nition performance, where results are identical or differ only
non-significantly. We can thus conclude that, for practical
purposes, the SR criterion is a very good approximation to the
RE criterion.

Finally, we looked at the overlap of the N-grams chosen by

No. Trigrams SR RE
0 35.8

1000 35.5 35.5
10000 34.8 34.8

100000 34.3 34.2
1000000 33.2 33.1

All 32.9

Table 3: Comparison of Seymore and Rosenfeld (SR) and
Relative Entropy (RE) pruning: word error rate as a function
of the number of trigrams.

No. Trigrams No. shared trigrams
1000 883

10000 8721
100000 85599

1000000 852016

Table 4: Overlap of selected trigrams between SR and RE
methods.

the two criteria, shown in Table 4. The percentage of common
trigrams ranges from 88.3% to 85.2%, and seems to decrease
as the model size increases. We can expect the most frequent
N-grams to be among those that are shared, making is no
surprise that both methods perform so similarly.

6. Conclusions
We developed an algorithm for N-gram selection for backoff
N-gram language models, based on minimizing the relative
entropy between the full and the pruned model. Experiments
show that the algorithm is highly effective, eliminating all but
26% of the parameters in a Hub4 four-gram model without
significantly affecting performance. The pruning criterion of
Seymore and Rosenfeld is seen to be an approximate version
of the relative entropy criterion; empirically, the two methods
perform about the same.

Acknowledgments
This work was sponsored by DARPA through the Naval Com-
mand and Control Ocean Surveillance Center under contract
N66001-94-C-6048. I thank Roni Rosenfeld and Kristie Sey-
more for clarifications and discussions regarding their paper
[9]. Thanks also to Hermann Ney and Dietrich Klakow for
pointing out similarities to [6].

References
1. T. C. Bell, J. G. Cleary, and I. H. Witten.Text Compression.

Prentice Hall, Englewood Cliffs, N.J., 1990.

2. T. M. Cover and J. A. Thomas.Elements of Information Theory.
John Wiley and Sons, Inc., New York, 1991.

3. I. J. Good. The population frequencies of species and the
estimation of population parameters.Biometrika, 40:237–264,
1953.

4. F. Jelinek. Up from trigrams! The struggle for improved
language models. InProc. EUROSPEECH, pp. 1037–1040,
Genova, Italy, 1991.

5. S. M. Katz. Estimation of probabilities from sparse data for
the language model component of a speech recognizer.IEEE
ASSP, 35(3):400–401, 1987.

6. R. Kneser. Statistical language modeling using a variable con-
text length. InProc. EUROSPEECH, vol. 1, pp. 494–497,
Rhodes, Greece, 1997.

7. D. Ron, Y. Singer, and N. Tishby. The power of amnesia. In
J. Cowan, G. Tesauro, and J. Alspector, editors,NIPS-5, pp.
176–183. Morgan Kaufmann, San Mateo, CA, 1994.



8. A. Sankar, L. Heck, and A. Stolcke. Acoustic modeling for the
SRI Hub4 partitioned evaluation continuous speech recognition
system. InProceedingsDARPASpeech RecognitionWorkshop,
pp. 127–132, Chantilly, VA, 1997.

9. K. Seymore and R. Rosenfeld. Scalable backoff language mod-
els. InProc. ICSLP, vol. 1, pp. 232–235, Philadelphia, 1996.

10. A. Stolcke and S. Omohundro. Hidden Markov model induc-
tion by Bayesian model merging. In S. J. Hanson, J. D. Cowan,
and C. L. Giles, editors,NIPS-5, pp. 11–18. Morgan Kaufmann,
San Mateo, CA, 1993.


